OEF rechte lijn in een vlak
--- Introductie ---
This module actually contains 13 exercises on lines in the cartesian
plane and their equations:
slope, distance, points on the line, parallel and perpendicular lines,
intersection,
...
Afstand punt-lijn I
l is de lijn gedefineerd door de vergelijking . Bereken de afstand tussen l en het punt ( , ) .
Afstand punt-lijn II
Let L be the plane line defined by the parametrized equations: x = , y = . Compute the distance between L and the point ( , ) .
Line on point I
Let L be the line define by the equation . What is the value of c so that L contains the point ( , ) ?
Line on point II
Let L be the line define by the equation . What is the value of c so that L contains the point ( , ) ?
Parallel I
Let L be the plane line defined by the equation . Find an equation of the line containing the point ( , ) and parallel to L.
Parallel II
Let L be the plane line defined by the parametrized equations: x = , y = . Find an equation of the line containing the point ( , ) and parallel to L.
Parametrized to equation
Let L be the plane line defined by the parametrized equations: x = , y = . Find an equation of L.
The equation must be of the form ax + by = c.
Perpendicular I
Let L be the plane line defined by the equation . Find an equation of the line containing the point ( , ) and perpendicular to L.
Perpendicular II
Let L be the plane line defined by the parametrized equations: x = , y = . Find an equation of the line containing the point ( , ) and perpendicular to L.
2 points
Find an equation of the line in the plane containing the points ( , ) and ( , ). The equation must be of the form ax + by = c.
Point on line I
Let L be the line define by the equation . Find the value of c such that the point ( , ) is on L.
Point on line II
Let L be the line defined by parametrized equations x = , y = . Find the value of c such that the point ( , ) is on L.
Point and slope
Find an equation of the line in the plane containing the point ( , ), and with slope = . The equation must be of the form ax + by = c.
The most recent version
Deze pagina heeft niet de standaard opmaak, omdat WIMS uw webbrowser niet herkent.
Bedenk goed dat WIMS pagina's interaktief worden gegenereerd; het zijn geen normale
HTML files. Ze moet dus ONLINE interaktief gebruikt worden. Het is verloren moeite
ze met een robot programma op te halen.
- Description: verzameling oefeningen over rechte lijnen en vergelijkingen. interactive exercises, online calculators and plotters, mathematical recreation and games
- Keywords: interactive mathematics, interactive math, server side interactivity, geometry, algebra, lijn, punt, helling, , vergelijking, segment, afstand